VIDYA BHAWAN BALIKA VIDYA PITH शक्तिउत्थानआश्रमलखीसरायबिहार

Class :-12(Maths)

Date:- 27..04.2021

Example 4.1

Find the principal value of sin_{-1} (- 1/2) (in radians and degrees).

Solution

Let $\sin_{-1}(-1/2) = y$. Then $\sin y = -1/2$.

The range of the principal value of $\sin_{-1} x$ is $[-\pi/2, \pi/2]$ and hence, let us find $y \in [-\pi/2, \pi/2]$ such that $\sin y = -1/2$. Clearly, $y = -\pi/6$.

Thus, the principal value of sin-1 (- 1/2) is $-\pi/6$. This corresponds to -30° .

Example 4.2

Find the principal value of sin-1 (2), if it exists.

Solution

Since the domain of $y = \sin_1 x$ is [-1, 1] and $2 \in [-1, 1]$, $\sin_{-1} (2)$ does not exist.

Example 4.3

Find the principal value of

Solution

We know that sin-1 : [-1, 1] \rightarrow [- $\pi/2$, $\pi/2$] is given by

 $\sin_{1} x = y$ if and only if $x = \sin y$ for $-1 \le x \le 1$ and $\pi/2 \le y \le \pi/2$. Thus,

Example 4.4

Find the domain of $sin_{-1} (2 - 3x_2)$

Solution

We know that the domain of $sin_{-1}(x)$ is [-1, 1].

This leads to $-1 \le 2 - 3x_2 \le 1$, which implies $-3 \le -3x_2 \le -1$.

Now, $-3 \le -3x_2$, gives $x_2 \le 1$ and ... (1)

 $-3x_2 \leq -1$, gives $x_2 \geq 1/3$...(2)

Combining the equations (1) and (2), we get $1/3 \le x_2 \le 1$. That is, $1/\sqrt{3} \le |x| \le 1$, which gives

, since $a \leq |\mathbf{x}| \leq b$ implies $\mathbf{x} \in [-b, -a] \cup [a, b]$.